The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-A resolution reveals structural microheterogeneity of protein and solvation.

نویسندگان

  • Tzu-Ping Ko
  • Howard Robinson
  • Yi-Gui Gao
  • Chi-Hing C Cheng
  • Arthur L DeVries
  • Andrew H-J Wang
چکیده

RD1 is a 7-kDa globular protein from the Antarctic eel pout Lycodichthys dearborni. It belongs to type III of the four types of antifreeze proteins (AFPs) found in marine fishes living at subzero temperatures. For type III AFP, a potential ice-binding flat surface has been identified and is imbedded with side chains capable of making hydrogen bonds with a specific lattice plane on ice. So far, all crystallographic studies on type III AFPs were carried out using the Atlantic ocean pout Macrozoarces americanus as the source organism. Here we present the crystal structure of a type III AFP from a different zoarcid fish, and at an ultra-high resolution of 0.62 A. The protein fold of RD1 comprises a compact globular domain with two internal tandem motifs arranged about a pseudo-dyad symmetry. Each motif of the "pretzel fold" includes four short beta-strands and a 3(10) helix. There is a novel internal cavity of 45 A(3) surrounded by eight conserved nonpolar residues. The model contains several residues with alternate conformations, and a number of split water molecules, probably caused by alternate interactions with the protein molecule. After extensive refinement that includes hydrogen atoms, significant residual electron densities associated with the electrons of peptides and many other bonds could be visualized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antifreeze peptide heterogeneity in an antarctic eel pout includes an unusually large major variant comprised of two 7 kDa type III AFPs linked in tandem.

The structural heterogeneity of the major antifreeze peptides (AFPs) from the antarctic eel pout, Lycodichthys dearborni (formerly classified as Rhigophila dearborni) was characterized. Three major AFPs designated as RD1, RD2 and RD3, and five minor ones were isolated from the fish plasma. RD1 and RD2 are both 64 residues in length, about 7 kDa, and thus similar in size to all characterized typ...

متن کامل

Artificial multimers of the type III antifreeze protein. Effects on thermal hysteresis and ice crystal morphology.

A variant of antifreeze protein (AFP) named RD3 from antarctic eel pout (Lycodichthys dearborni) comprises the type III AFP intramolecular dimer, which is known to exhibit a significant enhancement of thermal hysteresis when compared with the type III AFP monomer (Miura, K., Ohgiya, S., Hoshino, T, Nemoto, N., Suetake, T., Miura, A, Spyracopoulos, L., Kondo, H., and Tsuda, S. (2001) J. Biol. Ch...

متن کامل

Quantitative and qualitative analysis of type III antifreeze protein structure and function.

Some cold water marine fishes avoid cellular damage because of freezing by expressing antifreeze proteins (AFPs) that bind to ice and inhibit its growth; one such protein is the globular type III AFP from eel pout. Despite several studies, the mechanism of ice binding remains unclear because of the difficulty in modeling the AFP-ice interaction. To further explore the mechanism, we have determi...

متن کامل

Antifreeze Protein Dimer

A naturally occurring tandem duplication of the 7-kDa type III antifreeze protein from Antarctic eel pout (Lycodichthys dearborni) is twice as active as the monomer in depressing the freezing point of a solution. We have investigated the basis for this enhanced activity by producing recombinant analogues of the linked dimer that assess the effects of protein size and the number and area of the ...

متن کامل

Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction.

BACKGROUND Antifreeze proteins are found in certain fish inhabiting polar sea water. These proteins depress the freezing points of blood and body fluids below that of the surrounding sea water by binding to and inhibiting the growth of seed ice crystals. The proteins are believed to bind irreversibly to growing ice crystals in such a way as to change the curvature of the ice-water interface, le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 84 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2003